61 research outputs found

    De Novo PTEN Mutation in a Young Boy with Cutaneous Vasculitis

    Get PDF
    Phosphatase and tensin homolog (PTEN) is the protein encoded by the PTEN gene (10q23.3). PTEN mutations are related to a variety of rare diseases referred to collectively as PTEN hamartoma tumor syndromes (PHTS), which include Cowden Syndrome, Bannayan-Riley-Ruvalcaba syndrome, Proteus Syndrome, and Proteus-like syndrome. These diseases are associated with an increased risk of malignancy and for this reason an accurate and early diagnosis is essential in order to institute cancer surveillance. PTEN is a regulator of growth and homeostasis in immune system cells, although there are limited data describing immune dysregulation caused by PTEN mutations. We describe a case of PHTS syndrome caused by a de novo mutation in PTEN detected using a targeted next generation sequencing (NGS) gene panel which was instigated for workup of cutaneous vasculitis. We highlight the diagnostic utility of this approach and that mutations in PTEN may be associated with immune-dysregulatory features such as vasculitis in young children

    Vasculitis in a patient with mevalonate kinase deficiency (MKD): a case report

    Get PDF
    Background: Mevalonate kinase deficiency (MKD) is a rare autoinflammatory condition caused by biallelic loss-of-function (LOF) mutations in mevalonate kinase (MVK) gene encoding the enzyme mevalonate kinase. Patients with MKD display a variety of non-specific clinical manifestations, which can lead to diagnostic delay. We report the case of a child presenting with vasculitis that was found by genetic testing to be caused by MKD, and now add this autoinflammatory disease to the ever-expanding list of causes of monogenic vasculitides. Case presentation: A 2-year-old male presented with an acute 7-day history of high-grade fever, abdominal pain, diarrhoea, rectal bleeding and extensive purpuric and necrotic lesions, predominantly affecting the lower limbs. He had been suffering from recurrent episodes of fever from early in infancy, associated with maculopapular/petechial rashes triggered by intercurrent infection, and after vaccines. Extensive infection screen was negative. Skin biopsy revealed small vessel vasculitis. Visceral digital subtraction arteriography was normal. With a diagnosis of severe idiopathic cutaneous vasculitis, he was treated with corticosteroids and mycophenolate mofetil. Despite that his acute phase reactants remained elevated, fever persisted and the vasculitic lesions progressed. Next-generation sequencing revealed compound heterozygous mutation in MVK c.928G > A (p.V310M) and c.1129G > A (p.V377I) while reduced mevalonate enzyme activity was confirmed suggesting a diagnosis of MKD as a cause of the severe vasculitis. Prompt targeted treatment with IL-1 blockade was initiated preventing escalation to more toxic vasculitis therapies and reducing unnecessary exposure to cytotoxic treatment. Conclusions: Our report highlights the broad clinical phenotype of MKD that includes severe cutaneous vasculitis and emphasizes the need to consider early genetic screening for young children presenting with vasculitis to exclude a monogenic vasculitis which may be amenable to targeted treatment

    Efficacy and safety of anakinra for undifferentiated autoinflammatory diseases in children: a retrospective case review

    Get PDF
    Objective: The aim was to carry out a retrospective review of the efficacy and safety of anakinra in paediatric patients with undifferentiated autoinflammatory disease (uAID). Methods: We carried out a retrospective study of children with uAID at a single quaternary centre. The clinical efficacy of anakinra was evaluated using physician global assessment (PGA) and serological response assessed by levels of serum amyloid A and CRP. Safety was assessed by exploring adverse events, including infection and drug reactions. Results: This study included 22 patients, 64% females and 36% males of median age 7.1 years (range 0.13-14.11 years), with uAID. The median starting dose of anakinra was 2 mg/kg (range 2-6 mg/kg) and the median duration of treatment 19.6 months (range 0.8-100 months). Before anakinra treatment, the median PGA, on a three-point Likert scale, was 2 (range 1-2), which fell to 1 (range 0-2) within 3 months of treatment. Eight of 22 (36%) patients achieved complete clinical and serological remission; 8/22 (36%) achieved a partial response; and 6/22 (28%) had no response to anakinra. Adverse events included death (3/22, 14%) and allogeneic haematopoietic stem cell transplantation (1/22, 5%). There were no new safety signals, and anakinra was well tolerated overall. Conclusion: Retrospectively, 72% of children with uAID responded well to anakinra, with 36% achieving full clinical and serological remission within 3 months. This suggests that empirical trials of IL-1 blockade might be warranted in children with uAID. Clear stopping criteria based on predefined parameters should be considered, because non-responders required alternative therapies, facilitated by a definitive molecular diagnosis where possible

    Moyamoya-like cerebrovascular disease in a child with a novel mutation in myosin heavy chain 11

    Get PDF
    Heterozygous mutations in the MYH11 gene affecting the C-terminal coiled-coil region of the smooth muscle myosin heavy chain, a contractile protein of smooth muscle cells (SMC), have been described to cause thoracic aortic aneurysm or aortic dissection (TAAD) and patent ductus arteriosus (PDA).1 Herein we expand the phenotype associated with MYH11 mutations to include moyamoya-like cerebrovascular disease

    Association of the IL-10 gene family locus on chromosome 1 with juvenile idiopathic arthritis (JIA)

    Get PDF
    The cytokine IL-10 and its family members have been implicated in autoimmune diseases and we have previously reported that genetic variants in IL-10 were associated with a rare group of diseases called juvenile idiopathic arthritis (JIA). The aim of this study was to fine map genetic variants within the IL-10 cytokine family cluster on chromosome 1 using linkage disequilibrium (LD)-tagging single nucleotide polymorphisms (tSNPs) approach with imputation and conditional analysis to test for disease associations

    A rapid turnaround gene panel for severe autoinflammation: Genetic results within 48 hours

    Get PDF
    There is an important unmet clinical need for fast turnaround next generation sequencing (NGS) to aid genetic diagnosis of patients with acute and sometimes catastrophic inflammatory presentations. This is imperative for patients who require precise and targeted treatment to prevent irreparable organ damage or even death. Acute and severe hyper- inflammation may be caused by primary immunodeficiency (PID) with immune dysregulation, or more typical autoinflammatory diseases in the absence of obvious immunodeficiency. Infectious triggers may be present in either immunodeficiency or autoinflammation. We compiled a list of 25 genes causing monogenetic immunological diseases that are notorious for their acute first presentation with fulminant inflammation and which may be amenable to specific treatment, including hemophagocytic lymphohistiocytosis (HLH); and autoinflammatory diseases that can present with early-onset stroke or other irreversible neurological inflammatory complications. We designed and validated a pipeline that enabled return of clinically actionable results in hours rather than weeks: the Rapid Autoinflammation Panel (RAP). We demonstrated accuracy of this new pipeline, with 100% sensitivity and 100% specificity. Return of results to clinicians was achieved within 48-hours from receiving the patient's blood or saliva sample. This approach demonstrates the potential significant diagnostic impact of NGS in acute medicine to facilitate precision medicine and save "life or limb" in these critical situations

    Early-Onset Juvenile SLE Associated With a Novel Mutation in Protein Kinase C δ

    Get PDF
    Juvenile systemic lupus erythematosus (jSLE) is rare before 5 years of age. Monogenic causes are suspected in cases of very early onset jSLE particularly in the context of a family history and/or consanguinity. We performed whole-exome sequencing and homozygosity mapping in the siblings presented with early-onset jSLE. A novel homozygous missense mutation in protein kinase C delta (c.1294G>T; p.Gly432Trp) was identified in both patients. One patient showed a marked clinical response and resolution inflammation with rituximab therapy. This report demonstrates the clinical importance of identifying monogenic causes of rare disease to provide a definitive diagnosis, help rationalize treatment, and facilitate genetic counseling

    Lentiviral Mediated ADA2 Gene Transfer Corrects the Defects Associated With Deficiency of Adenosine Deaminase Type 2

    Get PDF
    Deficiency of adenosine deaminase type 2 (DADA2) is an autosomal recessive disease caused by bi-allelic loss-of-function mutations in ADA2. Treatment with anti-TNF is effective for the autoinflammatory and vasculitic components of the disease but does not correct marrow failure or immunodeficiency; and anti-drug antibodies cause loss of efficacy over time. Allogeneic haematopoietic stem cell transplantation may be curative, but graft versus host disease remains a significant concern. Autologous gene therapy would therefore be an attractive longer-term therapeutic option. We investigated whether lentiviral vector (LV)–mediated ADA2 gene correction could rescue the immunophenotype of DADA2 in primary immune cells derived from patients and in cell line models. Lentiviral transduction led to: i) restoration of ADA2 protein expression and enzymatic activity; (ii) amelioration of M1 macrophage cytokine production, IFN-γ and phosphorylated STAT1 expression in patient-derived macrophages; and (iii) amelioration of macrophage-mediated endothelial activation that drives the vasculitis of DADA2. We also successfully transduced human CD34+ haematopoietic stem progenitor cells (HSPC) derived from a DADA2 patient with pure red cell aplasia and observed restoration of ADA2 expression and enzymatic activity in CD34+HSPC, alongside recovery of stem-cell proliferative and colony forming unit capacity. These preclinical data now expand the evidence for the efficacy of gene transfer strategies in DADA2, and strongly support clinical translation of a lentivirus-mediated gene therapy approach to treat DADA2

    Testicular ischemia in deficiency of adenosine deaminase 2 (DADA2)

    Get PDF
    Background: Deficiency of adenosine deaminase 2 (DADA2) is a rare autosomal recessive autoinflammatory condition. Recognised features include vasculitis predominantly affecting medium sized vessels, livedoid skin rash, central and peripheral nervous system involvement, variable degrees of immunodeficiency, and marrow failure, amongst other clinical presentations. We present the case of a six year old male with DADA2 who presented with acute testicular ischaemia secondary to vasculitis, the first such description in DADA2. Case presentation: A six year old male presented acute right-sided testicular pain. His history included transient infantile neutropenia, resolved hepatosplenomegaly, and longstanding livedo racemosa, leading to screening and confirmation of DADA2 caused by homozygous c.139G > C (p.G47R) mutation of ADA2. As his only clinical feature was that of mild livedo racemosa with normal laboratory parameters at diagnosis, he was being actively monitored prior to starting any treatment. At a routine clinic follow-up a 24 h history of testicular pain was noted on systems review. He was afebrile, and his only physical signs were that of moderate livedo racemosa, and tenderness of the right testicle. Laboratory parameters revealed C-reactive protein (CRP) 8 mg/L (reference range [RR] < 20 mg/L); erythrocyte sedimentation rate (ESR) 28 mm/hr. (RR < 10); and serum amyloid A (SAA)5 mg/L (RR < 10). Ultrasoundscan of the scrotum revealed significantly reduced perfusion of the right testes, without torsion. Surgical scrotal exploration confirmed testicular ischaemia without torsion. Histology demonstrated ischaemic seminiferous tubules with intervening haemorrhage and acute inflammatory cells, consistent with vasculitis of the testis as the cause. He was treated with high dose intravenous methyl-prednisolone followed by a weaning course of oral prednisolone, and subcutaneous adalimumab (anti-tumour necrosis factor alpha, anti-TNFα). Repeat ultrasound-scan 3 weeks later revealed good testicular perfusion, with a small area of focal infarction. At last follow-up (11 months post-event) he remained asymptomatic, on treatment with adalimumab. Conclusion: The phenotype of DADA2 continues to expand, and we add testicular infarction to the features of DADA2. CRP and SAA cannot be relied on as reliable biomarkers to predict tissue ischaemia and hence who to target for anti-TNFα therapy in DADA2, since these remained steadfastly normal before, during, and after testicular infarction in this case
    • …
    corecore